NOWRDC Webinar -Opportunities in Offshore Wind Grid Integration March 19, 2021

Q/A will be managed via the Q/A or Chat Zoom functionality

geocee

1001CC C01000000

ELECTRIC POWER RESEARCH INSTITUTE

HITACHI ABB POWER GRIDS

Juergen Pilot

Program Manager,

National Offshore Wind R&D Consortium (NOWRDC)

Fabio Fracaroli

Senior Director, Renewable Segment North America, **HITACHI ABB POWER** GRIDS

Gary Rackliffe

Vice President Market and Innovation North America, HITACHI ABB POWER GRIDS

Brandon Fitchett

Principal Project Manager Electric Power **Research Institute** (EPRI)

Jonathan Ruddy

Senior Project Engineer

Electric Power **Research Institute** (EPRI) Europe DAC

HITACHI ABB POWER GRIDS

ELECTRIC POWER RESEARCH INSTITUTE

National Offshore Wind Research and Development Consortium

Goal: Facilitate a nationally-focused, not-for-profit organization collaborating with industry on prioritized R&D activities to reduce levelized cost of energy (LCOE) of offshore wind in the U.S. and maximize other economic and social benefits

Desired Impacts:

- Innovations directly responsive to the technical and supply chain barriers faced by offshore wind project developers in the U.S.
- > Build strong networks connecting technology innovators, investors, and industry
- Increase U.S. content and job opportunities

Project Value: \$41 M (\$20.5 DOE funds, matched by NYSERDA) – plus state (MA, VA, MD) and member contributions totaling over \$7M; 85% of the funds go to R&D projects

Duration: 4 years under current funding (+ 3 years to complete all projects); goal is to become self sustaining indefinitely through research partner funding

NOWRDC Project Awards (3/19/2021)

Pillar/Round	Technical Challenge Area	Proposal Title	Lead Proposer	Contract Status	Project Status
		Computational Control Co-design Approach for Offshore Wind Farm Optimization	Stony Brook University	Executed	Underway
	1.1. Annu Defension and Control Optimization	Impact of Low Level Jets on Atlantic Coast Offshore Wind Farm Performance	General Electric	Executed	Underway
		Reducing LCoE from Offshore Wind by Multiscale Wake Modeling	Cornell University	Executed	Underway
		Wind Farm Control and Layout Optimization for U.S. Offshore Wind Farms	NREL	Executed	Underway
	1.2: Cost-Reducing Turbine Support Structures for the U.S. Market	A Low-Cost Modular Concrete Support Structure and Heavy Left Vessel Alternative	RCAM Technologies	Executed	Underway
PON 4424 Pillar 1: Offshore		Demonstration of Shallow-Water Mooring Components for FOWTs (ShallowFloat)	Principle Power, Inc.	In Negotiation	Not Yet Started
Wind (OSW) Plant		Design and Certification of Taut-synthetic Moorings for Floating Wind Turbines	University of Maine	Executed	Underway
Technology Advancement		Dual-Functional Tuned Inerter Damper for Enhanced Semi-Sub Offshore Wind Turbine	Virginia Tech	Under Review	Not Yet Started
	1.3: Floating Structure Mooring Concepts for Shallow and Deep Waters	Innovative Anchoring System for Floating Offshore Wind	Triton Systems, Inc.	Executed	Underway
		Innovative Deepwater Mooring Systems for Floating Wind Farms (DeepFarm)	Principle Power, Inc.	Executed	Underway
		Shared Mooring Systems for Deep-Water Floating Wind Farms	NREL	Executed	Underway
		Techno-Economic Mooring Configuration and Design for Floating Offshore Wind	UMass Amherst	In Negotiation	Not Yet Started
	1.4: Power System Design and Innovation Challenge Statement	Development of Advanced Methods for Evaluating Grid Stability Impacts	NREL	In Negotiation	Not Yet Started
PON 4424 Pillar 2: OSW	2.1: Comprehensive Wind Resource Assessment	A Validated National Offshore Wind Resource Dataset with Uncertainty Quantification	NREL	Executed	Underway
Site Characterization 2.2: Development of a Metocean Reference Site		Development of a Metocean Reference Site near the MA & RI Wind Energy Areas	WHOI	Executed	Underway
		Enabling Condition Based Maintenance for Offshore Wind	General Electric	Under Review	Not Yet Started
PON 4424 Pillar 3:	2.2. Offenere Wind Digitization Through Advanced Analytics	Physics Based Digital Twins for Optimal Asset Management	Tufts University	Executed	Underway
<u>PON 4424 Pillar 3:</u> nstallation, O&M and Supply Chain Solutions	5.2. Ofishore wind Digitization through Advanced Analytics	Radar Based Wake Optimization of Offshore Wind Farms	General Electric	Under Review	Not Yet Started
		Survival Modeling for Offshore Wind Prognostics	Tagup, Inc.	Executed	Underway
	3.3: Technology Solutions to Accelerate U.S. Supply Chain	30GW by 2035: Supply Chain Roadmap for Offshore Wind in the US	NREL	Executed	Not Yet Started
PON 4476 Round 1: Enabling Large Scale Turbines	P1C1: Enabling Enhrication and Installation of Future Equipations	Self-Installing Concrete Gravity-Base Substructure Sizing for 15MW Turbine	ESTEYCO SL	In Negotiation	Not Yet Started
	RICI. Enabling rabilication and instantation of ruture roundations	Vibratory-Installed Bucket Foundation for Fixed Foundation Offshore Wind Towers	Texas A&M	In Negotiation	Not Yet Started
		Feasibility of a Jones Act Compliant WTIV Conversion	Exmar Offshore Company	In Negotiation	Not Yet Started
<u>.</u>	R1C2: Port and Marine Systems Innovation to Support Offshore Logistics	Tech. Validation of Existing US Barges as a Feeder Solution for US Offshore Wind	Crowley Maritime	In Negotiation	Not Yet Started
		Comparative Operability of Floating Feeder Solutions	MARIN USA	In Negotiatiojn	Not Yet Started

NOWRDC Solicitation Recipients (Prime and Subrecipients 3/19/2021)

PON4424

Agenda

- US Market for offshore Wind & Grids Evolution Fabio Fracaroli
- 2. Offshore Generation Technologies Brandon Fitchett
- 3. Offshore Grid Technologies Jonathan Ruddy
- 4. Grid Integration Gary Rackliffe
- 5. Conclusions and takeaways

Executive Summary

٠

- Fundamentals in place: natural resources, decreasing costs, location, public and corporative support, government support
- US Offshore Wind industry targeting +30GW by 2035 (East Coast only), with upside growth opportunities under new incentives e.g., Investment Tax Credits (ITCs) supporting lower generations costs of energy (LCOE) and longer development time frame
- US as one of the most attractive markets (EU players, O&G majors, Utilities, Government, Public support, Economic recovery)
- State level support, with existing uncertainties and expectations to overcome initial hurdles, particularly on Federal permitting processes
 - The pace of growth will test US operators' ability to accommodate new generation and will challenge transmission grids

U.S. onshore and offshore wind grid-connected forecast, 2020-2029

Note: Cumulative figures are net, thus including decommissioning and repowering Source: Wood Mackenzie

Factors:

- Full scale deployment of renewables across all regions
- Increased share of energy by wire and distributed energy resources
- Massive introduction of grid connected electrical vehicles
- Decarbonization, decentralization, bi-directional flows

- Utilities adjusting to new, additional business model
- Fully flexible power exchange with related data transfer ("Internet of Energy")
- Real-time control and higher security
- Artificial Intelligence enabling complex autonomous processes

Grids of the future demand flexibility, resilience, intelligence and interconnectivity

HITACHI

ABB

Decarbonization and electrification need acceleration of growth of renewables

Renewables cost reduction secures affordable clean energy

Projections indicate **150 GW** installed capacity by 2030*

\$840B* estimated to be invested over the next 2 decades

Transmission accounts for ~25% of CAPEX today

Lower hour by hour variability

Offshore wind **seasonally** complementary to solar

Can be used to produce green hydrogen

Energy transition has to secure local job creation and economic growth

Sustainable generation

HITACHI ABB POWER GRIDS © Hitachi ABB Power Grids 2020. All rights reserved

9

Players in the offshore wind industry face constant new challenges

Digitalization, interoperability, cybersecurity

Role of storage and PowerToX

Bankability, entry into new markets, asset management

Optimal system design

Grid development and integration

Performance, energy efficiency, reliability, availability

PPA's, subsidy free renewables, merchant projects, new revenues

LCOE reduction (larger turbine, higher voltage, larger wind farms, minimize total cost of ownership, speed...)

© Hitachi ABB Power Grids 2020. All rights reserved 10

HITACHI

ABB

Larger turbines under development – today +12 MW

Higher voltage – 66 kV as new standard for offshore wind farm array

Digitalization – for better asset utilization and integration of offshore wind to the grid

HVDC – to connect larger wind farms further away from the shore. HVDC also supports system stability

Floating offshore - to unlock further offshore wind potential

Energy storage – for **grid stabilization** and to provide ancillary services

Meshed grids – the future offshore infrastructure stability

11

Agenda

- US Market for offshore Wind & Grids Evolution Fabio Fracaroli
- 2. Offshore Generation Technologies Brandon Fitchett
- 3. Offshore Grid Technologies Jonathan Ruddy
- 4. Grid Integration Gary Rackliffe
- 5. Conclusions and takeaways

- \$400M annual funding, 1/3 international (> 450 participants in 38 countries)
- Technical Staff: 1000 employees
- Dozens of programs across Power Generation (non-Nuclear); Nuclear Power; Transmission and Distribution; Integrated Grid; Electrification and Sustainability; Technology Innovation.

Future Wind Power Plants

For a *reliable, affordable, resilient, and sustainable* electricity system, Wind Power Plants will need:

Improved Lifetime Energy Production

Reduced Costs, Capital & Operational

Increased Dispatchability and Grid Services

Increased Sustainability

www.epri.com

EPRI Wind Power Plant R&D Program

Deployment to Increase as Costs Decrease

www.epri.com

Global Offshore Wind Annual Builds (est)

Resource, Water Depth, Electricity Price, and Load Proximity

Maine 5,000 MW by 2030

w England

ua Ventus I 12 MW

Revolution Wind

Deepwater ONE

Vineyard Wind

Bay State Wind 2,000 MW

Massachusetts 1,600 MW by June 2027

Block Island Wind Farm

1.800 N

South Fork 90 MW

US Wind Inc. 2.230 MW

Garden State Offshore Energy

Ocean Wind

Skipjack 120 MW US Wind Inc. Coastal Virginia Offshore Wind

> Kitty Hawk 1.500 MW

12 MW

NY/NJ Example

Challenge: Energy When You Need It

Offshore Wind Farm Technology Basics – Turbine

www.epri.com

- >10 MW, >200m main rotor, 8 RPM
- Power production 4-25m/s (12-25m/s full pwr)
 - -20 or -30C to +35-40C
- Sustain gusts up to 70m/s (Class 3-4 hurricane)

Integration Challenge – Operation at the Extremes

Offshore Wind Scopes and Parties – U.S. Typical

Offshore Wind Scopes and Parties – Europe Typical

Electrical BoP options

Challenge: System Optimization with Turbines, Transmission, and Integration

Agenda

- US Market for offshore Wind & Grids Evolution Fabio Fracaroli
- 2. Offshore Generation Technologies Brandon Fitchett
- **3. Offshore Grid Technologies** Jonathan Ruddy
- 4. Grid Integration Gary Rackliffe
- 5. Conclusions and takeaways

Traditional Transmission Connection Methods for Offshore Wind

HVAC Interconnection

- HVAC cables
- Near-shore
- Capacitive charging current in subsea cable limits transmission distance
- Significant reactive compensation required

HVDC Interconnection

- Far offshore
- DC cables
- VSC HVDC Converter stations on and offshore

www.epri.com

HVAC Connection

- Mid Point reactive compensation may be required if long distance to shore
- Onshore reactive compensation (SVC/STATCOM) may be required to meet grid code voltage requirements
 - Synchronous condensers?
- Offshore reactive compensation
- Standardisation of HVAC offshore technology helps modular build out

Need to understand:

- Control resonance and stability
- Harmonic mitigation
- Voltage control & regulation
- Transient voltages
- Protection
- Coordinated control of parallel plants
- Implications of long HVAC cables on system operations

HVDC Connection

- Point to point DC connections "well understood" in 2021
- Independent control of reactive power
- Parallel HVDC links from offshore more complex

www.epri.com

Need to understand:

- Stability in offshore network
- 100 % inverter offshore collection network
- Grid Forming offshore
- Multiple HVDC connected Wind Plants
- Control of parallel HVDC
- Interoperability of vendors

Meshed Offshore Grids - Step by Step

Existing experience – AC and DC connections

» Parallel AC connections with interlink» Parallel DC connections with AC interlink

Next steps Hybrid interconnectors

<u>Parallel connected existing AC and new HVDC</u>
 » Offshore wind plants still synchronously connected to onshore network

Multi terminal HVDC

» Interoperability is important

NGESO – Offshore coordination study – integrated approach

Cost Savings

18% beginning 20259% beginning 2030

Environmental Benefit

Landing points reduced 50% 386 vs. 173

Onshore Infrastructure

Integrated approach minimize onshore grid upgrades

Image Credit: NGESO via DNV et al

Study: https://www.nationalgrideso.com/future-energy/projects/offshore-coordination-project

US context

Coordinated onshore/offshore long term grid development

- HV grid infrastructure not near shore
- Use of infrastructure?
- Max infeed?
- Impact of neighbouring states targets on Planning & Ops
- Coordination of synchronous plant retirements and offshore wind connections?

Image Credit: NYSERDA

What does the grid look like with high penetrations of offshore wind?

Agenda

- US Market for offshore Wind & Grids Evolution Fabio Fracaroli
- 2. Offshore Generation Technologies Brandon Fitchett
- 3. Offshore Grid Technologies Jonathan Ruddy
- 4. Grid Integration Gary Rackliffe
- 5. Conclusions and takeaways

Renewable energies are the key drivers in the evolution of the power system

30

Drivers	System operation	Generation	Transmission	Distribution	Usage	Market
Variability and uncertainty	 Production forecasting Demand Response Wide area monitoring Virtual Power Plants 	 Production forecasting Generation management system Virtual power plants 	 Grid expansions HVDC Bulk energy storage Automation and control 	 Distributed storage Load forecasting Renewable production forecasting 	 Energy storage Home and building automation 	 Energy Portfolio Management Market Management System
Lack of inertial response capability $\widehat{\bigcirc}$	 Synthetic inertia control Frequency control Plant and fleet automation and control 	 Plant automation and control Energy storage 	– Energy storage	FlywheelsEnergy storage	 Energy storage Demand response 	 Ancillary services definition
Locational constraints	 Grid expansions FACTS Energy storage Line voltage regulator Online tap changers 		 FACTS Long dist. transmission HVDC 	 Regional micro grids Grid interties Line voltage regulator Online tap changers 	– Nano grids	 Nodal price forecast
Modular & distributed	Grid automationVolt/ VAr managementVirtual Power Plants			 Grid automation Volt/ VAr Management 	- Virtual Power Plants	- Virtual Power Plans
			Communication	and Cybor Socurity		

Communication and Cyber Security
Services and Asset Management
Consulting

HITACHI ABB POWER GRIDS

HITACHI

ABB

- Renewable energies need wide areas to catch the natural available resources
- This areas are usually not close to consumption centers
- The generated energy needs to be transported to the load centers, stored for later use, or curtailed.
- Along the East Coast, the location challenge is the transmission congestion in SE Massachusetts, NY, and NJ.

Comparison of some regional characteristics: Germany, Texas, and U.S. East Coast

The location of renewable plants requires a smarter grid to facilitate their proper integration

32

HITACHI

ARR

- Non-synchronous generation like solar and frequency variable wind generators with power electronics are the fastest growing generation resources.
- These resources lack a generator rotor or rotating mass that can support grid frequency response by providing inertia to the grid.
- Usual frequency control systems in the grid rely on the inertial response for primary frequency control

Conventional power plants

Wind Power

Solar PV

With less rotatory mass frequency stability and control become more challenging

HITACHI ABB POWER GRIDS

Transmission technologies

Offshore Platform

HVDC Transmission

Series Capacitors

SVCs/STATCOMs

STATCOM and Synchronous Condenser

Energy Storage

34

HVDC

HVAC

- + Well known and proven technology
- + Shorter deliver time
- + Moderate sized offshore platforms => Larger supply base
- + Lower initial costs
- Limitation in maximum cable length due to high charging currents
- Long distances may require mid point compensation
- Typically higher losses
- Many cables => Possible capacity issues on supply side
- Cable installation
- May require Statcoms to fulfill Grid Code Requirements

- + Well known and proven technology
- + Superior dynamic behavior and features
- + Onshore and offshore grid support e.g. AC voltage and frequency stabilization
- + Black start capability
- + No minimum short-circuit power requirement for weak AC networks
- + Inherent Statcom functionality
- + Less cables and typically lower losses
- + No limitation in distance
- Large offshore platforms
- Longer lead time than AC
- Less cost efficient if short distance and/or low power rating

ANALYTICAL APPROACH Phase 1 (add 3 600 MW

Phase 1 (add 3,600 MW): Summary of the two transmission approaches

Current GLL Approach

- 9 x 400 MW High Voltage Alternating Current (HVAC) cable bundles:
- 800 MW each at Montville, Kent Co. Brayton Pt. & Canal
- 400 MW at Falmouth
- 694 miles of marine cabling
- 4.0% losses
- Significant onshore transmission overloads

Planned Offshore-Grid Approach

- 3 x 1,200 MW High Voltage Direct Current (HVDC)
- cable bundles
- 1,200 MW each at Bridgeport, Brayton Pt. & Mystic
 356 miles of marine cabling
- 2.4% losses
- Minimal onshore transmission overloads

Sources: Overloads based on GE analysis for Anbaric (Appendix B), which identified numerous within-zone overloads not identified in ISO-NE brattle.com | 12 zonal analysis. Loss estimates based on vendor specifications and third-party sources

two transmission approaches Phase 2, Current Approach (add 8,200 MW) Phase 2, F

- 9 x 466 MW HVAC cable bundles
- 9 X 400 MW HVAC Cable bundles
 1,400 MW each at Montville, Kent Co., & Canal

ANALYTICAL APPROACH

- 1,400 MW each at Montville, Kent Co., & Ca
 1 x 400 MW HVAC project
- 400 MW at Bourne
- 926 miles of marine cabling (1,620 through Phase 2)
- S20 miles of marine cabing (1,620 through Phas
- Major onshore transmission overloads

Phase 2, Planned Approach (add 8,600 MW)

- 3 x multiterminal HVDC projects
- 2,000 MW to Waterford (1200 MW) & East Devon (800 MW)*
- 1,600 MW to K St. (800 MW) & Woburn (800 MW)*
- 1,000 MW to Bridgewater

Phase 2 (add 8,000+ MW): Summary of the

- 400 MW HVAC project to Kent Co. RI
- 474 miles of marine cabling (831 through Phase 2)

*Multiterminal HVDC injecting at two locations

brattle.com | 13

Source – Brattle Group

HITACHI ABB POWER GRIDS © Hitachi ABB Power Grids 2020. All rights reserved

Solutions – SVCs and STATCOMs

- Flexible AC Transmission Systems (FACTS) that provide dynamic, controllable reactive power.
- They control reactive power injection or absorption to provide dynamic voltage control, increase voltage stability, secure and enhance power supply, and increase transmission capacity.
- SVCs and STATCOMs are both doing a similar job. SVC is based on thyristor technology and STATCOMs are based on transistor (IGCT/IGBT) technology.

UK – the need to address changing power flows

Currently Operating Coal (red) & Nuclear (yellow) Generation vs. 2025 Scenario in the UK

HITACHI ABB POWER GRIDS © Hitachi ABB Power Grids 2020. All rights reserved

HITACHI

ABB

Hybrid Synchronous Condenser – Project Data

Project Purpose & Scope

Main Drivers

- Reduced System Inertia
- Reduced System Fault Level
- Limitations in Voltage Control
- Provide alternative to converting retired thermal units

<u>Scope</u>

- SVC Light HP STATCOM: ±70 Mvar
- Synchronous Condenser, Rated -35/+70 Mvar
- MACH® Platform Control & Protection
- Software Models and System Studies
- Civil Works, Installation, Testing and Commissioning

HITACHI

Renewable shifting

Store excess renewable production to be used during peak demand hours.

Frequency and voltage support

Proprietary Virtual Generator Mode algorithms manage frequency and voltage excursions.

Renewable smoothing

Smooth out the rapid fluctuations in power output from renewable generators and dynamic loads.

Microgrid/islanding

Grid-forming, seamless transition and black start capabilities to provide power in the event of utility disruption.

Cybersecurity

Ensures high level of cybersecurity according NERC-CIP and IEEE 1686.

		Issues
	Local connection to the grid	 Reactive power and voltage control in distribution and transmission grid Power quality Power flow and overload control System protection Grid code compliance
	System wide integration	 Generation adequacy Network enforcement and extension Balance of load and generation, load-frequency-control Renewable curtailments and demand response
	Market integration	 Area balancing Price volatility Generation forecasting Regulation and financing schemes

© Hitachi ABB Power Grids 2020. All rights reserved 41

HITACHI ABB POWER GRIDS

Agenda

- US Market for offshore Wind & Grids Evolution Fabio Fracaroli
- 2. Offshore Generation Technologies Brandon Fitchett
- 3. Offshore Grid Technologies Jonathan Ruddy
- 4. Grid Integration Gary Rackliffe
- 5. Conclusions and takeaways

Conclusions and Takeaways

Technology

- Connections
 - AC and DC nuances
 - Grid-Forming
 - Multiple POIs
- Digital integration
- Generation, transmission & distribution, Substations

Planning

- Power Studies
 - POIs, Grid connection
 - Meshed Grids or Single Lines?
 - Long-term planning can allow study of multiple options
- System Goals?
- Minimize congestion
- Maximize Reliability
- Inertia, Short circuit levels
- Environment and Public

ELECTRIC POWER RESEARCH INSTITUTE

- Collaborative R&D and Design
- Systems vs. components
- Power system goals vs. site incentives/contracts
- Stakeholders

Coordination

- Multi-organizational Site, Power System, Utilities, Investors, Public
- Multi-state, Multi-National (Learn from Europe)

HITACHI ABB POWER GRIDS

NOWRDC Webinar -Opportunities in Offshore Wind Grid Integration March 19, 2021

Questions?

Any additional follow-up may be directed to juergen@nationaloffshorewind.org

<u>g</u>errer

ELECTRIC POWER RESEARCH INSTITUTE

HITACHI ABB POWER GRIDS